Extensions 1→N→G→Q→1 with N=C2xC32:C9 and Q=C2

Direct product G=NxQ with N=C2xC32:C9 and Q=C2
dρLabelID
C22xC32:C9108C2^2xC3^2:C9324,82

Semidirect products G=N:Q with N=C2xC32:C9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC32:C9):1C2 = C2xC32:C18φ: C2/C1C2 ⊆ Out C2xC32:C9366(C2xC3^2:C9):1C2324,62
(C2xC32:C9):2C2 = C2xC32:D9φ: C2/C1C2 ⊆ Out C2xC32:C954(C2xC3^2:C9):2C2324,63
(C2xC32:C9):3C2 = C2xC32:2D9φ: C2/C1C2 ⊆ Out C2xC32:C9366(C2xC3^2:C9):3C2324,75

Non-split extensions G=N.Q with N=C2xC32:C9 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC32:C9).1C2 = C32:C36φ: C2/C1C2 ⊆ Out C2xC32:C9366(C2xC3^2:C9).1C2324,7
(C2xC32:C9).2C2 = C32:Dic9φ: C2/C1C2 ⊆ Out C2xC32:C9108(C2xC3^2:C9).2C2324,8
(C2xC32:C9).3C2 = C32:2Dic9φ: C2/C1C2 ⊆ Out C2xC32:C9366(C2xC3^2:C9).3C2324,20
(C2xC32:C9).4C2 = C4xC32:C9φ: trivial image108(C2xC3^2:C9).4C2324,27

׿
x
:
Z
F
o
wr
Q
<